Algebra (87 টি প্রশ্ন )
Correct answer: Option 1. Explanation (textbook style).

Let the quadratic be x^2 − Sx + P = 0 with nonzero roots r1, r2. By Viète’s relations
r1 + r2 = S, r1 r2 = P.
Hence the sum of reciprocals is
Σ 1/r_i = 1/r1 + 1/r2 = (r1 + r2)/(r1 r2) = S/P.
To get the sum of reciprocal squares,
Σ 1/r_i^2 = 1/r1^2 + 1/r2^2 = (r1^2 + r2^2)/(r1^2 r2^2).
But r1^2 + r2^2 = (r1 + r2)^2 − 2r1 r2 = S^2 − 2P, and r1^2 r2^2 = (r1 r2)^2 = P^2. Therefore
Σ 1/r_i^2 = (S^2 − 2P)/P^2.
(Equivalently, letting y = 1/x and dividing the original equation by x^2 gives P y^2 − S y + 1 = 0, so the sum of the roots y = S/P and the sum of their squares equals (S^2 − 2P)/P^2.)

Example (to check): x^2 − 2x − 1 = 0 has S = 2, P = −1. Then Σ 1/r_i = 2/(−1) = −2 and Σ 1/r_i^2 = (4 − 2(−1))/1 = 6 (which matches a direct computation of the reciprocals).
Let the monic cubic be \(f(x)=x^{3}+ax^{2}+bx+c\) with roots \(r_{1},r_{2},r_{3}\). By Viète's relations
\[
e_{1}=r_{1}+r_{2}+r_{3}=-a,\qquad
e_{2}=r_{1}r_{2}+r_{2}r_{3}+r_{3}r_{1}=b,\qquad
e_{3}=r_{1}r_{2}r_{3}=-c.
\]
Denote \(p_{k}=r_{1}^{k}+r_{2}^{k}+r_{3}^{k}\). Then
1) \(p_{1}=e_{1}=-a.\)

2) For \(p_{2}\) use the square of the sum:
\[
p_{2}=(r_{1}+r_{2}+r_{3})^{2}-2\sum_{i\]
Substituting \(e_{1}=-a,\ e_{2}=b\) gives
\[
p_{2}=(-a)^{2}-2b=a^{2}-2b.
\]

3) For \(p_{3}\) use Newton's identity for degree 3:
\[
p_{3}=e_{1}p_{2}-e_{2}p_{1}+3e_{3}.
\]
Substitute the known values:
\[
p_{3}=(-a)(a^{2}-2b)-b(-a)+3(-c)=-a^{3}+2ab+ab-3c=-a^{3}+3ab-3c.
\]

Thus
\[
p_{1}=-a,\qquad p_{2}=a^{2}-2b,\qquad p_{3}=-a^{3}+3ab-3c,
\]
which matches Option 1.
Let the roots be \(r_1,r_2,r_3\) of \(ax^3+bx^2+cx+d=0\). By Viète's relations,
\[
r_1+r_2+r_3=-\frac{b}{a},\qquad
r_1r_2+r_2r_3+r_3r_1=\frac{c}{a},\qquad
r_1r_2r_3=-\frac{d}{a}.
\]
Use the identity
\[
r_1^2+r_2^2+r_3^2=(r_1+r_2+r_3)^2-2(r_1r_2+r_2r_3+r_3r_1).
\]
Substitute the Viète expressions:
\[
r_1^2+r_2^2+r_3^2=\Big(-\frac{b}{a}\Big)^2-2\Big(\frac{c}{a}\Big).
\]
Thus the correct choice is Option 1: \(\displaystyle\big(-\frac{b}{a}\big)^2-2\frac{c}{a}.\)
Start with Viète's relations for the quadratic ax^2 + bx + c = 0:
r1 + r2 = −b/a, r1 r2 = c/a.

Compute
\[
r_1^2 + r_2^2 = (r_1 + r_2)^2 - 2r_1r_2
= \Big(\!-\frac{b}{a}\!\Big)^2 - 2\cdot\frac{c}{a}
= \frac{b^2}{a^2} - \frac{2c}{a}
= \frac{b^2 - 2ac}{a^2}.
\]

Thus the correct choice is Option 1: \(\displaystyle \Big(-\frac{b}{a}\Big)^2 - 2\frac{c}{a}.\) (Option 4, which has a plus sign, is incorrect.)
Correct answer: Option 1.

Explanation:

The elementary symmetric polynomials in the roots \(r_1,\dots,r_n\) are defined for \(k=1,\dots,n\) by
\[
e_k(r_1,\dots,r_n)=\sum_{1\le i_1<\cdots\]
Thus
\[
e_1=\sum_{i=1}^n r_i,\qquad
e_2=\sum_{1\le i\ldots,\qquad
e_n=r_1r_2\cdots r_n.
\]

Examples: for \(n=3\),
\[
e_1=r_1+r_2+r_3,\quad
e_2=r_1r_2+r_1r_3+r_2r_3,\quad
e_3=r_1r_2r_3.
\]

Why this is the standard choice: if \(p(x)\) is the monic polynomial with roots \(r_i\),
\[
p(x)=\prod_{i=1}^n (x-r_i)=x^n-e_1x^{\,n-1}+e_2x^{\,n-2}-\cdots+(-1)^n e_n,
\]
so the coefficients of \(p\) are exactly the elementary symmetric polynomials (Vieta’s formulas).

Why the other options are incorrect:
- Option 2 mixes products and sums incorrectly (it places \(\prod r_i\) as \(e_1\) and uses power sums for later \(e_k\)); that does not match the definition above.
- Option 3 gives power sums \(p_k=\sum_i r_i^k\), which are symmetric but are not the elementary symmetric polynomials.
- Option 4 only describes the \(n=2\) case and does not generalize; elementary symmetric polynomials are defined for every \(n\) as in Option 1.

Thus Option 1 is the correct description.
We are given roots \(2,\;1+i,\;1-i\) and asked for the monic cubic polynomial with real coefficients.

Since complex roots come in conjugate pairs for real-coefficient polynomials, the quadratic factor from \(1\pm i\) is
\[
(x-(1+i))(x-(1-i))=((x-1)-i)((x-1)+i)=(x-1)^2+1 = x^2-2x+2.
\]
Multiplying by the linear factor for the root \(2\) gives the cubic:
\[
(x-2)(x^2-2x+2).
\]
Expand:
\[
\begin{aligned}
(x-2)(x^2-2x+2) &= x^3-2x^2+2x -2x^2+4x-4\\
&= x^3-4x^2+6x-4.
\end{aligned}
\]
So the monic cubic is \(x^3-4x^2+6x-4\), which matches Option 1.
Since the polynomial is monic and its roots are \(1\) and \(-3\), it factors as
\[
p(x)=(x-1)(x-(-3))=(x-1)(x+3).
\]
Expanding,
\[
p(x)=x^2+3x-x-3=x^2+2x-3.
\]
Thus the correct choice is Option 3: \(x^2+2x-3\).
Correct answer: Option 1 (2 and 3). Explanation (textbook style, using Vieta and factoring):

For the quadratic \(x^{2}-5x+6=0\) (here \(a=1,\;b=-5,\;c=6\)), Vieta's formulas state that if the roots are \(r_1,r_2\) then
\(\;r_1+r_2=-\dfrac{b}{a}\) and \(\;r_1r_2=\dfrac{c}{a}\).
Thus \(r_1+r_2=-\dfrac{-5}{1}=5\) and \(r_1r_2=\dfrac{6}{1}=6\). We need two numbers whose sum is \(5\) and product is \(6\); these numbers are \(2\) and \(3\). Therefore the roots are \(2\) and \(3\).

Equivalently, factor the quadratic: \(x^{2}-5x+6=(x-2)(x-3)\). Setting this to zero gives \((x-2)(x-3)=0\), so \(x=2\) or \(x=3\).
We start from the factorization by the roots. If the cubic
\[
ax^3+bx^2+cx+d
\]
has roots \(r_1,r_2,r_3\), then (up to the leading coefficient)
\[
ax^3+bx^2+cx+d = a(x-r_1)(x-r_2)(x-r_3).
\]
Expand the right-hand side:
\[
(x-r_1)(x-r_2)(x-r_3)=x^3-(r_1+r_2+r_3)x^2+(r_1r_2+r_1r_3+r_2r_3)x-r_1r_2r_3.
\]
Multiplying by \(a\) gives
\[
ax^3 - a(r_1+r_2+r_3)x^2 + a(r_1r_2+r_1r_3+r_2r_3)x - a\,r_1r_2r_3.
\]
Compare coefficients with \(ax^3+bx^2+cx+d\):
- Coefficient of \(x^2\): \(\;b = -a(r_1+r_2+r_3)\;\) so \(\;r_1+r_2+r_3 = -\dfrac{b}{a}.\)
- Coefficient of \(x\): \(\;c = a(r_1r_2+r_1r_3+r_2r_3)\;\) so \(\;r_1r_2+r_1r_3+r_2r_3 = \dfrac{c}{a}.\)
- Constant term: \(\;d = -a\,r_1r_2r_3\;\) so \(\;r_1r_2r_3 = -\dfrac{d}{a}.\)

Therefore the correct Vieta relations are
\[
\boxed{\,r_1+r_2+r_3 = -\dfrac{b}{a},\qquad r_1r_2+r_1r_3+r_2r_3 = \dfrac{c}{a},\qquad r_1r_2r_3 = -\dfrac{d}{a}\,}
\]
This corresponds to Option 2. The alternative list you gave (with the pairwise sum \(-c/a\) and product \(d/a\)) has the signs reversed and is not correct for the polynomial written as \(ax^3+bx^2+cx+d\).

ফ্রিতে ২ লাখ প্রশ্নের টপিক, সাব-টপিক ভিত্তিক ও ১০০০+ জব শুলুশন্স বিস্তারিতে ব্যাখ্যাসহ পড়তে ও আপনার পড়ার ট্র্যাকিং রাখতে সাইটে লগইন করুন।

লগইন করুন
For the quadratic equation \(ax^2+bx+c=0\) (with \(a\neq0\)) let the roots be \(r_1\) and \(r_2\). Then the polynomial can be written in factored form
\[
a(x-r_1)(x-r_2)=ax^2-a(r_1+r_2)x+a\,r_1r_2.
\]
Comparing coefficients with \(ax^2+bx+c\) gives
\[
-a(r_1+r_2)=b\quad\Rightarrow\quad r_1+r_2=-\frac{b}{a},
\]
\[
a\,r_1r_2=c\quad\Rightarrow\quad r_1r_2=\frac{c}{a}.
\]
Thus Vieta’s relations are \(r_1+r_2=-\dfrac{b}{a}\) and \(r_1r_2=\dfrac{c}{a}\). (If \(a=1\) these reduce to \(r_1+r_2=-b\) and \(r_1r_2=c\).)









ফ্রিতে ২ লাখ প্রশ্নের টপিক, সাব-টপিক ভিত্তিক ও ১০০০+ জব শুলুশন্স বিস্তারিতে ব্যাখ্যাসহ পড়তে ও আপনার পড়ার ট্র্যাকিং রাখতে সাইটে লগইন করুন।

লগইন করুন










ফ্রিতে ২ লাখ প্রশ্নের টপিক, সাব-টপিক ভিত্তিক ও ১০০০+ জব শুলুশন্স বিস্তারিতে ব্যাখ্যাসহ পড়তে ও আপনার পড়ার ট্র্যাকিং রাখতে সাইটে লগইন করুন।

লগইন করুন

সঠিক উত্তর: 0 | ভুল উত্তর: 0